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Abstract  

In this paper, we propose two fuzzy data mining 
approaches for microarray analysis, namely Fuzzy 
Associative Gene Expression (FAGE) and Ripple 
Effective Gene Expression Rule (REGER) algorithms. 
Both of them first transform microarray data into 
fuzzy items, and then use fuzzy operators and 
specially-designed data structures to discover the 
relationships among genes. Through the proposed 
algorithms, a novel pattern named Ripple Pattern is 
discovered that indicates the genes active at the same 
time with their linguistic terms being monotone 
increasing or decreasing. The experimental results 
show that the proposed algorithms are effective in 
discovering novel and useful rules from microarray 
data. 

Keywords: Microarray, Gene Expression Analysis, 
Association Rule, Fuzzy Set, Ripple Pattern. 

 
1. Introduction 

 
Bioinformatics has become a more and more 

important research field since it provides powerful and 
effective ways for biologists to analyze and evaluate 
ideas through computer science methods [8]. Some 
domains such as multiple genes alignment [5], motif 
identification [4], microarray analysis [7], protein 
structure prediction [22] and pathway analysis [21] 
especially rely on it for discovering useful information. 
Recently, microarray data analysis received extensive 
attentions due to its wide applications. In the past, if 
biologists want to know certain gene expression, the 
only way to get the result is through experiments in the 
wet laboratory. However, the processes of the 
experiments are time-consuming, especially when a 
number of genes are involved. The microarray 
technology that can get lots of gene expressions at the 
same time thus becomes a popular way for gene 
expression analysis. How to analyze the relationships 
among genes from the microarray data has become an 
important issue. 
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Early researches on microarray analysis were 
primarily based on statistical methods [8]. As mentioned 
above, they are time-consuming when the dataset is very 
huge. Thus, data mining technologies that can find 
information efficiently are used to solve this problem. 
Many approaches based on clustering [15, 18], 
classification [3], association rules [6, 7] were proposed 
to analyze microarray data. In [6, 7], the raw gene 
expression values need to be transformed into category 
values like “up-regulated” or “down-regulated” before 
the association rule mining method can be performed. 
However, microarray data were numerical data, thus how 
to design a suitable algorithm to deal with this data is an 
important issue. 

Recently, fuzzy set theory [26] has been used more 
and more frequently in intelligent systems because of its 
simplicity and similarity to human reasoning [14]. 
Several fuzzy learning algorithms for inducing rules 
from given datasets have been proposed and applied in 
various domains like manufacturing, engineering, 
diagnosis, economics, etc [11][14][19][25]. Hong et al. 
[13] proposed a fuzzy mining approach to find fuzzy 
interesting itemsets and fuzzy association rules from 
quantitative data. The mining results obtained could be 
smooth due to the characteristics of fuzzy membership. 

In this paper, we propose two novel methods that 
combine fuzzy concept and Apriori-like approach for 
mining fuzzy association patterns in microarray datasets. 
First, we explore the issue of discovering fuzzy 
association rules from the microarray data called Fuzzy 
Associative Gene Expression (FAGE) algorithm. It first 
transforms the numerical gene expression data into fuzzy 
items, and then use fuzzy operators to find the 
association rules among them. Secondly, we extend 
FAGE to propose the Ripple Effective Gene Expression 
Rule (REGER) algorithm for finding Ripple Patterns that 
are hidden in the microarray data. Ripple Pattern means 
a potentially chained reaction among genes. For example, 
a ripple pattern like “WSC4:L SOK1:SH HSP12:H” 
means that the genes WSC4, SOK1, and HSP12 are 
active at the same time with their expressions as Low (L), 
Slightly-High (SH) and High (H), respectively, in 
monotone manner. Since the Ripple Patterns discovered 
by the REGER algorithm are represented by linguistic 
rules, they will be friendlier for biologists to analyze 
than in form of quantitative representation. Through 
experimental evaluation on real microarray data, the 
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proposed algorithms are shown to be very effective in 
discovering novel and useful relations among genes from 
gene expression data. 

Remaining of this paper is organized as follows: In 
Section 2, we describe some related work. The proposed 
algorithms are given in details in Section 3. Section 4 
gives the experimental results, and the concluding 
remarks are made in Section 5. 

 
2. Related Work 

 
Data mining is most commonly used in attempts to 

induce association rules from transaction data [1][2]. The 
goal is to discover important associations among items 
such that the presence of some items in a transaction will 
imply the presence of some other items. To achieve this 
purpose, Agrawal et al. proposed several mining 
algorithms based on the concept of large itemsets to find 
association rules in transaction data [2]. They divided the 
mining process into two phases. In the first phase, if the 
number of an itemset appearing in the transactions was 
larger than a pre-defined threshold value (called 
minimum support), the itemset was considered a large 
itemset. In the second phase, association rules were 
induced from the large itemsets found in the first phase. 
All possible association combinations for each large 
itemset were formed, and those with calculated 
confidence values larger than a predefined threshold 
(called minimum confidence) were output as association 
rules. 

Chen et al. proposed a mining algorithm to find 
transcription factors essential to gene expression [6]. 
They first defined each type of tissues as a set of 
transactions. Each transaction thus consists of 
transcription factors and the target genes. After 
transformation, Apriori mining algorithm [2] was then 
used to mine association rules to obtain transcription 
factors associated with gene expressions. In [7], 
Creighton et al. proposed an Apriori-like algorithm to 
mine association rules among gene expressions. Their 
approach is composed of two phases: quantitative values 
discretization and association-rule generation.  In 
quantitative values discretization phase, the approach 
used experimental results from laboratory to specify 
up-regulated and down-regulated interval, and then 
transformed each gene expression value in microarray 
into up-regulated or down-regulated state. In 
association-rule generation, Apriori mining algorithm [2] 
was then used to mine association rules. The rule format 
was “ Ga ↑ Gb ↑ ” , which means if Ga is 
up-regulated, then Gb is also up-regulated. In [16], 
Kotala et al. proposed a mining algorithm that used 
Peano Count Tree (P-tree) to discover association rules 
from microarray data. The rule format was “{G1, ..., 

Gn} Gm”, which means that a given confidence level of 
the expression genes, G1, ..., Gn, will result in the 
expression of Gm gene. Other mining approaches like 
clustering [9][24], which groups genes into its similar 
group and gives a view of gene family, and classification 
[3], which used to predict the gene family. 

As to fuzzy data mining, Hong et al. proposed several 
fuzzy mining algorithms to mine linguistic association 
rules from quantitative data [12][13][17]. They 
transformed each quantitative item into a fuzzy set and 
used fuzzy operations to find fuzzy rules. Their proposed 
algorithm focused on transaction data. Thus, in this 
paper we propose the fuzzy association rules mining 
algorithm to mine rules and discover Ripple Patterns 
from microarray data. 
 

3. Proposed Methods 
 
In this session, the two proposed algorithms are 

described. The first algorithm, namely Fuzzy Association 
Gene Expression (FAGE), is proposed to mine fuzzy 
rules from microarray data by applying Hong’s approach 
[12]. The Ripple Effective Gene Expression Rule 
(REGER) algorithm, which is then extended from the 
FAGE algorithm, is proposed to mine Ripple Patterns. 
Both algorithms are stated in details in the following. 

 
A. The Fuzzy Associative Gene Expression (FAGE) 

Algorithm 
The main idea of FAGE algorithm is to first transform 

microarray data into fuzzy items, and then use fuzzy 
operators to find the relationships among them as [12]. 
The detail of the FAGE algorithm is shown in Figure 1. 

Input: A microarray data set M with n experiments, each of 
which has w genes; a set of k membership functions for 
data value; a predefined minimum support α ; a 
predefined minimum confidence λ. 

Output: A set of fuzzy association rules among genes with 
confidence values. 

1. For i 1 to n do 

2.  For j 1 to w do 

3.   Transform quantitative value vj
(i) into fuzzy items using MS
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10. Calculate the fuzzy value of I in each experiment i as: 
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12. Prune fuzzy items whose count is smaller thanα 

13. If Lr+1 = null, then do the next step; otherwise, set r = r + 1 
and repeat Lines 8 to 12. 

14. Construct the association rules for each large q-itemset I 
with items (I1, I2, …, Iq), q ≥ 2 as follows: 

15. Form each possible association rule as follows: 

I1 ∧ ... ∧ Ih-1 ∧ Ih+1 ∧ ... ∧ Iq  Ih, h = 1 to q 
16. Calculate the confidence values of all possible rules as 

follows: 
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17. Output the association rules with confidence values larger 
than or equal to the predefined confidence threshold λ. 

Figure 1. The FAGE Algorithm. 

From Fig. 1, the algorithm is divided into two phases, 
the frequent itemsets generating phase (Line 1-13) and 
rules generating phase (Line 14-17). In frequent itemsets 
generating phase, lines 1 to 3 are to transform gene 
expression into fuzzy values. Lines 4 to 13 are then used 
to generate all frequent itemsets. In rules generating 
phase, line 15 is for forming candidate fuzzy rules. Line 
16 is then used to calculate confidence values of all rules. 
Finally, the fuzzy rules with confidence values large then 
or equal to the predefined minimum confidence are 
output as results. 

 
B. The Ripple Effective Gene Expression Rule (REGER) 

Algorithm 
The REGER algorithm is used to mine Ripple Patterns. 

The detail of the REGER algorithm is shown in Figure 2. 

Input: A microarray data set M with n experiments, each of which 
has w genes; a set of k membership functions MS for data 
value; a predefined minimum support α; a predefined 
minimum confidence λ; a minimum rule length l. 

Output: The Ripple Patterns. 

1. For i 1 to n do 
2.  For j 1 to w do 
3.   Transform quantitative value vj

(i) into fuzzy items using MS 
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Figure 2. The FAGE Algorithm. 
 
From Figure 2, there are three phases, namely rule 

generating phase (lines 1-10), tree building phase (lines 
11-28) and Ripple Patterns generating phase (lines 
19-22), for the REGER algorithm. In rule generating 
phase, the fuzzy association rules are generated from 
large 2-itemset using the same way in FAGE. In line 10, 
the constraint means the linguistic terms of genes must 
be monotone increasingly or decreasingly. In tree 
building phase, the specified tree structure is then used 
to store fuzzy rules. It uses two hash trees, Ti and Td, 
namely the increasing and decreasing hash tree, 
respectively, to store the rules generated from the first 
phase. From the tree structure, we can find all Ripple 
Patterns by reusing the increasing and decreasing hash 
tree instead of scanning the fuzzy rule set again and 
again. For example, assume the rules (only monotone 
increasing) generated from the first phase are shown in 
Table 1, the increasing hash tree is then built as shown in 
Figure 3. 

 
Table 1. Eight fuzzy rules 

RULEI 
Rule1 G1:L G2:SL Rule5 G2:SL G3:SH 
Rule2 G1:L G3:SH Rule6 G1:L G5:SH 
Rule3 G2:SL G4:H Rule7 G2:SL G5:SH 
Rule4 G5:SH G6:H Rule8 G5:SH G9:H 

null

G1:L G2:SL G5:SH

G2:SL G3:SH G5:SH G3:SH G4:H G5:SH G6:H G9:H

null

G1:L G2:SL G5:SH

G2:SL G3:SH G5:SH G3:SH G4:H G5:SH G6:H G9:H  
Figure 3. The increasing hash tree. 
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Finally, Ripple Patterns generating phase uses 
Find_Pattern procedure to find Ripple Patterns as show 
in Figure 4. 

1. Find_Pattern(prefix_list, postset) 
2. For each item in postset 
3.   prefix_list prefix_list+item 
4.   new_postset post_set∩get_children(item) 
5.   If( new_postset is empty ) 
6.     If( length(prefix_list) > l ) 
7.     Output rule 
8.     remove_last_item(prefix_list) 
9.   Else 
10.     Find_Pattern(prefix_list,new_postset) 
11. End For each 
12. End procedure 

Figure 4. Find_Pattern procedure. 

From Fig. 4, the primary action is using the recursive 
procedure, Find_Pattern, to find Ripple Patterns. 
Continued from previous example, when l is set as 2, the 
Find_Pattern procedure generates two Ripple Patterns, 
namely “G1:L  G2:SL  G3:SH” and “G1:L  G2:SL 

 G5:SH”. 
 

4. Experimental Evaluation 
 
A series of experiments were conducted to evaluate 

the performance of the proposed methods and to verify 
the accuracy of the discovered rules. The simulations 
were implemented in C++ at a personal computer with 
AMD K8N 2800+ and 1GB memory. The yeast dataset 
used in the experiments is the same as [7]. The dataset 
contains gene expression profiles for 6316 genes 
corresponding to 300 diverse mutation and chemical 
treatments in yeast, which yields to a skewed dataset. We 
tested four membership functions, namely Low (L), 
SlightlyLow (SL), SlightlyHigh (SH), and High (H), 
which represent different levels of gene expressions in 
the experiments as shown in Figure 5. In [7], two crisp 
intervals, up-regulated and down-regulated interval, 
were used to transform gene expressions into 
up-regulated or down-regulated state. In this way, only 
about 300 genes of 6316 genes are used to mine 
association rules. However, in our experimental 
evaluation, more than 2000 genes were used to analyze 
the yeast dataset. Hence, more interesting rules can be 
discovered by our methods. 
A. Experimental Results on the FAGE Algorithm 

The first experiment was made to show the difference 
of the number of rules between the FAGE algorithm and 
the crisp mining algorithm in [7]. The minimum support 
and minimum confidence are set as 10% and 80%, 
respectively. The experimental results were shown in 
Figure 6. 

L SL SH H

-0.2 -0.05-0.075-0.15 0.050.075 0.15 0.2 Expression Value

L SL SH H

-0.2 -0.05-0.075-0.15 0.050.075 0.15 0.2

1

L SL SH H

-0.2 -0.05-0.075-0.15 0.050.075 0.15 0.2 Expression Value

L SL SH H

-0.2 -0.05-0.075-0.15 0.050.075 0.15 0.2

1

 
Figure 5. The trapezoid membership functions. 
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Figure 6. The difference of number of rules between the 
FAGE algorithm and the crisp mining algorithm [7]. 

From Figure 6, it is easily seen that the difference of 
number of association rules between the proposed 
approach and the crisp mining algorithm [7] increases 
along with the increasing in large itemsets, except for the 
case of large 8-itemset. For example, over 5,000 rules 
are generated by the proposed approach than the crisp 
mining algorithm [7] from large 5-itemsets. Totally, 
more than 40,000 rules can be derived using the FAGE 
algorithm. Among the discovered fuzzy rules, we list 
two verified fuzzy rules as shown in Table 2. 

Table 2. The verified fuzzy association rules 
RULEI 

1 SNO1:H,SNZ1:H SPO21:SH, CTF13:H 
2 GRX1:SH->HSP12:H 

From Table 2, in antecedent part of the first rule, 
SNO1 and SNZ1 are stationary-phase induced genes that 
appear to be involved in the cellular response to nutrient 
limitation and growth arrest [20]. In consequent part, 
SPO21 is related to formation of the prosper membrane 
as described in MIPS (http://mips.gsf.de/). The three 
genes are thus related genes. The second rule indicates a 
disclosed truth, because GRX1 and HSP12 are all stress 
related genes and GRX1 is the sub-process of HSP12 
[23]. However, an interesting result left for further study 
is why the gene GRX1 has lower expression 
(SlightlyHigh). 

More experiments were then made to show the 
relationships between the number of rules and minimum 
support values under different minimum confidence 
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values. The results are as shown in Figure 7. 
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Figure 7. Relationships between number of rules and 
minimum support values. 

From Fig. 7, it is easily seen that the number of 
association rules decreases along with minimum support 
values increased. Also, the curve for numbers of 
association rules with larger minimum confidence values 
was more smooth than those with smaller minimum 
confidence values, meaning that the minimum support 
value has significant impact on the number of 
association rules derived from small minimum 
confidence values. We can also see that there is a sharp 
rise in the number of rules when minimum support 
exceeds 8%. It thus gives the indication that we may find 
novel rules and avoid confusion when minimum support 
is set around 8%. 

 
B. Experimental Results on The REGER Algorithm 

In order to show the effectiveness of the REGER 
algorithm, the experiment was made to find Ripple 
Patterns when the minimum support and minimum 
confidence are set as 10% and 55%, respectively. The 
results were shown in Table 3. 

Table 3. The rules derived from the REGER algorithm 
Rulei Ripple Patterns 
Rule1 WSC4:L SOK1:SH HSP12:H 
Rule2 WSC4:L SOK1:SH ARO9:H 
Rule3 WSC4:L SOK1:SH NCA3:H 
Rule4 WSC4:L SOK1:SH SNZ1:H 
Rule5 WSC4:L SOK1:SH NCE103:H 
Rule6 WSC4:L SOK1:SH YOR338:H 
Rule7 YPL267W:SL RIM101:SH CTF13:H 
Rule8 YPL267W:SL RIM101:SH SNO1:H 
Rule9 YPL267W:SL RIM101:SH SNZ1:H 
Rule10 YPL267W:SL RIM101:SH NCE103:H 

In Table 3, we could find an interesting phenomenon 
as described below. From Rules 1 to 6, we can easily see 
that they all contain WSC4 and SOK1 genes, which then 
imply to different genes. In this case, we may consider 
WSC4/SOK1 as mediator genes in some pathways or 
biological processes. From Rules 7 to 10, we can also 
consider RIM101 as mediator genes for linking gene 

YPL267W to other genes. 
After the validated process, we divided the discovered 

rules into three classes, namely well-known rules, 
partially-known rules and unknown rules, as shown in 
Table 4. 

Table 4. The classes of rules 
Class Rule numbers 

Well-known rules 1,4,5 
Partially-known rules 2,3,6 

Unknown rules 7,8,9,10 

For well-known rules, WSC4 and SOK1 are found to be the 
signal and communication related genes in Rule 1 from MIPS. 
The relationship between WSC4 and HSP12 can be found in 
Gene Ontology that describes that both of them are heat shock 
functions, and SOK1 and HSP12 are in the same protein 
family. Thus, Rule 1 is a validated rule. In [10], it was 
described that if WSC4 is down-regulated, then SNZ1 is 
usually up-regulated. Hence, Rule 4 is also a validated rule. 
Rule 5 can also be validated by Gene Ontology. 

For partially-known rules, Rule 2 and Rule 3 were 
only partially known for the relation between WSC4 and 
SOK1. Thus, they may be suggested to biologists as 
candidate interesting genes. Rule 6 could not be 
validated because YOR388 is unknown gene, and it is 
needed biological experiment to find its functions. 

For unknown rules, since YPL267W has less 
information than other genes, Rule 7 to 10 can not be 
validated yet but these rules exhibit potential relations 
among genes for further studies. 

 
5. Conclusions and Future Work 

 
In this paper, we have proposed two algorithms for 

microarray analysis. Firstly, we propose the FAGE 
algorithm for mining fuzzy association rules from 
microarray data. Secondly, we extend the FAGE 
algorithm to propose the REGER algorithm to find 
Ripple Patterns. Both of them first transform numerical 
data into fuzzy items, and then used fuzzy operators to 
find the relationships among them. 

The experimental results show that the FAGE 
algorithm can not only find more rules than the method 
in [7], but also demonstrate that the derived fuzzy 
association rules are useful in revealing unknown 
relations among genes. The experimental results also 
show that the REGER algorithm can provide a novel 
style to analyze gene expression data and mine useful 
and interesting patterns for biologists. 

For future work, we will enhance the REGER 
algorithm to find the unknown mediator genes in 
pathways and extend it for analyzing time serial 
microarray data. Besides, it is another interesting issue 
concerning how to combine abundant bioinformatics 
resources on Web like the Gene Ontology or other 
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databases to build a system for automatically verifying 
discovered gene functions. 
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